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Abstract

Based on the Reddy’s theory of plates with the effect of higher-order shear deformations, the governing
equations for nonlinear vibration of orthotropic plates with finite deformations are presented. The
nonlinear free vibration is analyzed by the differential quadrature method. The differential quadrature
approach suggested by Wang and Bert is extended to handle the multiple boundary conditions of the plate.
A new technique is also further extended to simplify nonlinear computations and the harmonic balance
method is used in deriving the equation of motion. The numerical convergence and comparison studies are
carried out to validate the present solutions. The results show that the presented differential quadrature
method is fairly reliable and valid. Influences of geometric and material parameters, transverse shear
deformations and rotation inertia, as well as vibration amplitudes, on the nonlinear free vibration
characteristics of orthotropic plates are studied.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Plates with various shapes and materials are important structural elements. They are widely
used in modern engineering and science. There are many papers for the nonlinear behaviors of
r 2004 Elsevier Ltd. All rights reserved.
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orthotropic and laminated plates based on the Kirchhoff assumption, which ignores the effect of
transverse shear deformation [1–3]. It is more important to consider the effect of transverse shear
deformation for orthotropic and laminated plates than for isotropic plates. Sathyamoorthy,
Reddy and other researchers [4] studied nonlinear vibration of plates based on the first-order plate
theory with a shear correction factor to account for the parabolic shear strain distribution. Reddy
[5] developed the theory of plates, taking into account the effect of higher-order shear
deformations, which eliminates the need for a shear correction factor. Tennetiand et al. [6–9]
analyzed the nonlinear vibration of laminated plates according to the Reddy theory and by using
finite element method.

Compared with the standard numerical techniques such as the finite element and finite
difference methods, the differential quadrature method (DQM), originated by Bellman and Casti
[10], is one of the high-efficiency methods in solving complex linear and nonlinear problems of
solid and structural mechanics. Bert and Malik [11] provided an excellent overview of the
publications on differential quadrature method. Bert et al. [12,13] employed successfully the
DQM to solve the static and free vibration problems of isotropic and orthotropic plates. In order
to simplify application and to improve efficiency and accuracy of the DQM, Wang and Bert
[14,15] presented an approach to deal with boundary conditions. In addition, Chen [16]
introduced the special matrix product to express the formulation of the nonlinear partial
differential operator in an explicit matrix form. There are a lot of papers related to linear
vibration of Mindlin Plates with various boundary conditions by using DQM [17,18]. To the best
of the authors’ knowledge, there have been no reports on the nonlinear vibration of plates with
finite deformations by DQM.

In this paper, the DQM is further extended to deal with the nonlinear free vibration of
orthotropic plates based on the Reddy’s theory of plates with the effect of higher-order transverse
shear deformation. Moreover, the differential quadrature approach presented by Wang and Bert
(DQWB) is also further extended to handle the boundary conditions of higher-order moments of
plates with finite deformations. A technique similar to paper [16] is extended to simplify nonlinear
computations and the harmonic balance method [19] is used to derive the equations of motion.
The numerical convergence and comparison studies are carried out to validate the present DQ
solutions. Good convergence and agreement are achieved. Furthermore, numerical examples
show the effects of geometric and material parameters of orthotropic plate on nonlinear vibration
characteristics. At the same time, the effects of transverse shear deformations and rotation inertia
on nonlinear vibration behaviors of orthotropic plate are studied, too.
2. Mathematical Model

Consider an orthotropic rectangular plate with the sides of lengths a and b along x and y axes,
respectively, and thickness h. Let X ¼ x=a; Y ¼ y=a; the dimensionless displacements be
UðX ;Y Þ ¼ uðx; yÞ=h; V ðX ;Y Þ ¼ vðx; yÞ=h; W ðX ;Y Þ ¼ wðx; yÞ=h; and FðX ;Y Þ and CðX ;Y Þ be the
mid-plane rotations about the y and x axes, respectively.

Based on Reddy’s theory of plates taking into account the effect of higher-order shear
deformations [4], the governing equations of nonlinear free vibration of orthotropic plates with
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finite deformations can be written as

A11U ;XX þ A66l
2U ;YY þ ðA12 þ A66ÞlV ;XY þ W ;X ðA66b

�1l2W ;YY þ A11b
�1W ;XX Þ

þ ðA12 þ A66Þl
2b�1W ;XY W ;Y ¼ b�2 €U ;

A22l
2V ;YY þ A66V ;XX þ ðA12 þ A66ÞlU ;XY þ W ;Y ðA22l

3b�1W ;YY þ A66lb
�1W ;XX Þ

þ ðA12 þ A66Þlb
�1W ;XY W ;X ¼ b�2 €V ;

G1W ;XXXX þ G2l
4W ;YYYY þ G3l

2W ;XXYY þ G4bF;XXX þ G5bl
3C;YYY

þ G6ðbl
2F;XYY þ lbC;YXX Þ � G7ðb

3F;X þ b2W ;XX Þ � G8ðlb
3C;Y þ l2b2W ;YY Þ

þ ðl2b2A22W ;YY þ b2A12W ;XX Þðb
�1lV ;Y þ 1

2
b�2l2W 2

;Y Þ

þ ðl2b2A12W ;YY þ b2A11W ;XX Þðb
�1U ;X þ 1

2
b�2W 2

;X Þ

þ 2A66b
2lW ;XY ðb

�1lU ;Y þ b�1V ;X þ lb�2W ;Y W ;X Þ

þ bW ;X ½A11U ;XX þ A66l
2U ;YY þ ðA12 þ A66ÞlV ;XY

þ W ;X ðA66b
�1l2W ;YY þ A11b

�1W ;XX Þ þ ðA12 þ A66Þl
2b�1W ;XY W ;Y �

þ lbW ;Y ½A22l
2V ;YY þ A66V ;XX þ ðA12 þ A66ÞlU ;XY

þ W ;Y ðA22l
3b�1W ;YY þ A66lb

�1W ;XX Þ þ ðA12 þ A66Þlb
�1W ;XY W ;X �

¼ €W þ G13b
�2 €W ;XX þ G13b

�2l2 €W ;YY þ G14b
�1 €F;X þ G14b

�1l €C;Y

� G4W ;XXX � G6l
2W ;XYY þ G10bF;XX þ G11bl

2F;YY þ G9blC;YX

þ G7ðb
3Fþ b2W ;X Þ ¼ G15b

�1 €Fþ G16b
�2 €W ;X

� G5l
3W ;YYY � G6lW ;XXY þ G11bC;XX þ G9blF;XY þ G12bl

2C;YY

þ G8ðb
3Cþ lb2W ;Y Þ ¼ G15b

�1 €Cþ G16b
�2l €W ;Y ; ð1Þ

where l ¼ a=b; b ¼ a=h and T ¼ t=t0; t0 ¼ ða2=hÞ
ffiffiffiffiffiffiffiffiffiffiffi
r=E1

p
; t is the time, E1 is the Young’s modulus

in the x-direction, r is the density. Obviously, Eq. (1) is a set of nonlinear partial-differential
equations, as in which include the product of unknown variables.

For convenience, we assume that the edge of the plate is simply supported. So the boundary
conditions can be given as

U ¼ V ¼ W ¼ P1 ¼ M1 ¼ C ¼ 0; X ¼ 0

U ¼ V ¼ W ¼ P1 ¼ M1 ¼ C ¼ 0; X ¼ 1

U ¼ V ¼ W ¼ P2 ¼ M2 ¼ F ¼ 0; Y ¼ 0

U ¼ V ¼ W ¼ P2 ¼ M2 ¼ F ¼ 0; Y ¼ 1; ð2Þ

in which the moment Mi and higher-order moment Pi are expressed as

M1 ¼ D1F;X þ D2C;Y þ D3W ;XX þ D4W ;YY ;

M2 ¼ D5F;X þ D6C;Y þ D7W ;XX þ D8W ;YY ;
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P1 ¼ D9F;X þ D10C;Y þ D11W ;XX þ D12W ;YY ;

P2 ¼ D13F;X þ D14C;Y þ D15W ;XX þ D16W ;YY : ð3Þ

From Eqs. (3) and (2), the boundary conditions with simply supported edge can be simplified as

U ¼ V ¼ W ¼ C ¼ F;X ¼ W ;XX ¼ 0; X ¼ 0;

U ¼ V ¼ W ¼ C ¼ F;X ¼ W ;XX ¼ 0; X ¼ 1;

U ¼ V ¼ W ¼ F ¼ C;Y ¼ W ;YY ¼ 0; Y ¼ 0;

U ¼ V ¼ W ¼ F ¼ C;Y ¼ W ;YY ¼ 0; Y ¼ 1: ð4Þ

All coefficients Gi and Di in the above equations and boundary conditions can be found in
Appendix A.
3. DQM on nonlinear vibration of orthotropic plates

The DQM approximates the partial derivative of a function, with respect to a spatial variable at
a given discrete point, as a weighted linear sum of the function values at all discrete points chosen
in the solution domain of the spatial variable. Consider a function F (representing U,V,W,F and
C) of the variables in the domain (0pXp1; 0pYp1) with N � N grid points along x and y axes,
respectively. Then, the first-order partial derivative of the function FðX ;Y Þ at a given discrete
point X ¼ X i along any line Y ¼ Y i parallel to x-axis may be approximated by

ðF ;X Þi ¼
@F

@X

� �
x¼xi

¼
XN

k¼1

AikFk 	 AikFk; i; k ¼ 1; 2; ::::;N: ð5Þ

Here, Fk ¼ F ðX k;Y lÞ; Aik ði; k ¼ 1; 2 . . . ;NÞ are the weighting coefficients of the first-order partial
derivative and they may be obtained from the paper [11]. At the same time, for convenience of
writing, we employ here summation convention, namely, the terms with repeat subscript in an
expression (for example, k in Eq. (5)) express the sum about the subscripts from 1 to N.

The weighting coefficients of the higher-order partial derivatives with respect to x can be
computed by matrix multiplication once Aik’s are determined. Thus, one has

ðF ;XX Þi ¼ AijAjkFk ¼ BikFk;

ðF ;XXX Þi ¼ AijBjkFk ¼ CikFk;

ðF ;XXXX Þi ¼ AijCjkFk ¼ BijBjkFk ¼ DikFk; ð6Þ

where Bik, Cik and Dik are the weighting coefficients of the second-, third- and fourth-order partial
derivatives, respectively. The formulae in the y-direction are similar.

DQWB approach [14,15] is now further extended to handle the higher-order boundary
conditions of plates taking into account the effect of transverse shear deformations. The essence
of the DQWB approach is that boundary conditions are applied during formulation of the
weighting coefficients for inner grid points.

Using Eqs. (5) and (6) in matrix form and noticing the boundary conditions about deflections
W 1 ¼ W jX¼0 ¼ 0;W N ¼ W jX¼1 ¼ 0 and W 1;XX ¼ W N;XX ¼ 0 from Eq. (4), one obtains the
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equivalent equations as follows [14]:

ðW ;X Þi ¼ ĀikW k; Āi1 ¼ ĀiN ¼ 0;

ðW ;XX Þi ¼ B̄ikW k; B̄i1 ¼ B̄iN ¼ 0;

ðW ;XXX Þi ¼ C̄ikW k; C̄i1 ¼ C̄iN ¼ 0;

ðW ;XXXX Þi ¼ D̄ikW k; D̄i1 ¼ D̄iN ¼ 0: ð7Þ

From the boundary conditions (4), it can be seen that the weighting coefficients Āik; B̄ik; C̄ik

and D̄ik for U, V and W are similar.
Eq. (7) can be written as the following matrix forms:

W;X ¼ ĀW; W;XX ¼ B̄W; W;XXX ¼ C̄W; W;XXXX ¼ D̄W; ð8Þ

where, W ¼ ½W 2;W 3; . . .W N�2;W N�1�
T is a desired ðN � 2Þ line vector, Ā; B̄; C̄ and D̄ are ðN �

2Þ � ðN � 2Þ coefficient matrices. Similarly, we may obtain the formulae for U and V.
For the boundary conditions of FðX ;Y Þ and CðX ;Y Þ; it is necessary to modify the

corresponding coefficient matrices.
From the boundary conditions (4), the corresponding DQ approximate equations of the

boundary conditions for FðX ;Y Þ are given as

F1 ¼ FN ¼ 0; Y ¼ 0; 1; ð9aÞ

XN

k¼1

A1kFk ¼ 0;
XN

k¼1

ANkFk ¼ 0; X ¼ 0; 1; ð9bÞ

C1 ¼ CN ¼ 0; X ¼ 0; 1; ð9cÞ

XN

k¼1

A1kCk ¼ 0;
XN

k¼1

ANkCk ¼ 0; Y ¼ 0; 1: ð9dÞ

From Eqs. (9b) and (9d), the boundary values of ðF1;FNÞ at X ¼ 0; 1 and the boundary values
of ðC1; CNÞ at Y ¼ 0; 1 can be, respectively, expressed in terms of the values of Fi and Cj at the
inner points:

F1jX¼0 ¼
A1N

PN�1
k¼2 ANkFk � ANN

PN�1
k¼2 A1kFk

ANNA11 � A1NAN1
;

FN jX¼1 ¼
AN1

PN�1
k¼2 A1kFk � A11

PN�1
k¼2 ANkFk

ANNA11 � A1NAN1
;

C1jY¼0 ¼
A1N

PN�1
k¼2 ANkCk � ANN

PN�1
k¼2 A1kCk

ANNA11 � A1NAN1
;

CN jY¼1 ¼
AN1

PN�1
k¼2 A1kCk � A11

PN�1
k¼2 ANkCk

ANNA11 � A1NAN1
:

ð10Þ
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Similar to the way above, substituting Eqs. (9a), (9c) and (10) into Eqs. (5) and (6), we have

U;Y ¼ ĀU; U;YY ¼ B̄U;

U;X ¼ ¯̄AU; U;XX ¼ ¯̄BU; U;XXX ¼ ¯̄CU;

W;X ¼ ĀW; W;XX ¼ B̄W;

W;Y ¼ ¯̄AW; W;YY ¼ ¯̄BW; W;YYY ¼ ¯̄CW: ð11Þ

Here, the forms of U and W are similar to those of W, ¯̄A; ¯̄B and ¯̄C are ðN � 2Þ � ðN � 2Þ modified
coefficient matrices.

Further dividing the two-dimensional domain into Nx � Ny grid points along x and y axes,
respectively, the DQ formulation, in matrix form, for the partial derivative of a function F(X,Y)
(representing U, V and W) in two-dimensional domain may be given as follows [16]:

F;X ¼ ĀxF; F;XX ¼ B̄xF; F;XXX ¼ C̄xF; F;XXXX ¼ D̄xF;

F;Y ¼ FĀ
T

y ; F;YY ¼ FB̄
T
y ; F;YYY ¼ FC̄

T

y ; F;YYYY ¼ FD̄
T
y ;

F;XY ¼ ĀxFĀ
T

y ; F;XYY ¼ ĀxFB̄
T
y ;

F;XXY ¼ B̄xFĀ
T

y ; F;XXYY ¼ B̄xFB̄
T
y : ð12Þ

The DQ formulations in matrix form for the partial derivatives of the functions Fðx; yÞ and
Cðx; yÞ in two-dimensional domain are similar; hence we have

U;Y ¼ UĀ
T

y ; U;YY ¼ UB̄
T
y U;XYY ¼ ¯̄AxUB̄

T
y ;

U;X ¼ ¯̄AxU; U;XX ¼ ¯̄BxU; U;XXX ¼ ¯̄CxU;U;XY ¼ ¯̄AxUĀ
T

y ;

W;X ¼ ĀxW; W;XX ¼ B̄xW; W;XXY ¼ B̄xW ¯̄A
T

y ;

W;Y ¼ W ¯̄A
T

y ; W;YY ¼ W ¯̄B
T

y ; W;YYY ¼ W ¯̄C
T

y ;W;XY ¼ ĀxW ¯̄A
T

y : ð13Þ

Other than W, U and W (please see Eqs. (8) and (11)), the unknown variables F, U and W are
rectangular unknown matrices. Ā; B̄; C̄; D̄ and ¯̄A; ¯̄B; ¯̄C with subscripts x and y stand for the DQ
weighting coefficient matrices for the first-, second-, third- and fourth-order partial derivatives
along x and y directions, respectively. The superscript T means the transpose of the matrices.

Applying DQ matrix formulas (12) and (13), the nonlinear vibration equation (1) can be
discretized at each discrete point on all inner grids of the two-dimensional domain as

A11B̄xUþ A66l
2UB̄

T
y þ ðA12 þ A66ÞlĀxVĀ

T

y þ ðb�1ĀxWÞ � ðA66l
2WB̄

T
y þ A11B̄xWÞ

þ ðA12 þ A66ÞðlĀxWĀ
T

y Þ � ðlb
�1WĀ

T

y Þ ¼ b�2 €U;

A22l
2VB̄

T
y þ A66B̄xVþ ðA12 þ A66ÞlĀxUĀ

T

y þ ðlb�1WĀ
T

y Þ � ðA22l
2WB̄

T
y þ A66B̄xWÞ

þ ðA12 þ A66ÞðlĀxWĀ
T

y Þ � ðb
�1ĀxWÞ ¼ b�2 €V;
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G1D̄xWþ G2l
4WD̄

T
y þ G3l

2B̄xWB̄
T
y þ G4b ¯̄CxU þ G5bl

3W ¯̄C
T

Y

þ G6ðbl
2 ¯̄AxUB̄

T
y þ blB̄xW ¯̄A

T

y Þ � G7ðb
3 ¯̄AxU þ b2B̄xWÞ � G8ðlb

3W ¯̄A
T

y þ b2l2WB̄
T
y Þ

þ ½l2b2A22ðWB̄
T
y Þ þ b2A12ðB̄xWÞ� � ½b�1lðVĀ

T

y Þ þ
1
2
b�2l2ðWĀ

T

y Þ � ðWĀ
T

y Þ�

þ ½l2b2A12ðWB̄
T
y Þ þ b2A11ðB̄xWÞ� � ½b�1

ðĀxUÞ þ 1
2
b�2

ðĀxWÞ � ðĀxWÞ�

þ 2A66b
2lðĀxWB̄

T
y Þ � ½b

�1lðUĀ
T

y Þ þ b�1
ðĀxVÞ þ lb�2

ðĀxWÞ � ðWĀ
T

y Þ�

þ bðĀxWÞ � ½A11B̄xUþ A66l
2UB̄

T
y þ ðA12 þ A66ÞlĀxVĀ

T

y

þ ðb�1ĀxWÞ � ðA66l
2WB̄

T
y þ A11B̄xWÞ þ ðA12 þ A66ÞðlĀxWĀ

T

y Þ � ðlb
�1WĀ

T

y Þ�

þ lbðWĀ
T

y Þ � ½A22l
2VB̄

T
y þ A66B̄xVþ ðA12 þ A66ÞlĀxUĀ

T

y

þ ðlb�1WĀ
T

y Þ � ðA22l
2WB̄

T
y þ A66B̄xWÞ þ ðA12 þ A66ÞðlĀxWĀ

T

y Þ � ðb
�1ĀxWÞ�

¼ €Wþ G13b
�2B̄x

€Wþ G13b
�2l2 €WB̄

T
y þ G14b

�1 ¯̄Ax
€U þ G14b

�1l €W ¯̄A
T

y

� G4C̄xW� G6l
2ĀxWB̄

T
y þ G10b ¯̄BxU þ G11blUB̄

T
y

þ G9blĀxW ¯̄A
T

y þ G7ðb
3U þ b2ĀxWÞ ¼ G15b

�1 €U þ G16b
�2Āx

€W

� G5l
3WC̄

T

y � G6lB̄xWĀ
T

y þ G11bB̄xW þ G9bl ¯̄AxUĀ
T

y

þ G12bl
2W ¯̄B

T

y þ G8ðb
3W þ lb2WĀ

T

y Þ ¼ G15b
�1 €W þ G16b

�2l €WĀ
T

y : ð14Þ

Here, the symbol ‘‘�’’ expresses Hadamard product of matrices defined as

A � B ¼ ½ aij bij � 2 CN�M ;

where A ¼ ½aij�; B ¼ ½bij� 2 CN�M ; CN�M denotes the set of N � M real matrices.
We have to point out that the boundary conditions (4) have been applied when the coefficients

in Eq. (14) are calculated. Thus, the boundary conditions (4) must not be reconsidered when
Eq. (14) is solved.

Using Hadamard and Kronecker products of matrices [16,20], and ignoring in-plane inertia, the
coupled nonlinear formulations can be converted into an explicit matrix form as follows:

L1Ūþ L2V̄þ ðL7W̄Þ � ðL1W̄Þ þ ðL8W̄Þ � ðL2W̄Þ ¼ 0; ð15aÞ

L2Ūþ L3V̄þ ðL8W̄Þ � ðL3W̄Þ þ ðL7W̄Þ � ðL2W̄Þ ¼ 0; ð15bÞ

L4W̄þ H7Ū þ H8W̄ þ ðL5W̄Þ � ½L7Ūþ 1
2
ðL7W̄Þ � ðL7W̄Þ�

þ ðL6W̄Þ � ½L8V̄þ 1
2
ðL8W̄Þ � ðL8W̄Þ�

þ
2A66b

2

A12 þ A66
ðL2W̄Þ � ½L8Ūþ L7V̄þ ðL7W̄Þ � ðL8W̄Þ�
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¼ €̄Wþ G13b
�2B̄x

€̄Wþ G13b
�2l2 €̄WB̄

T

y þ G14b
�1 ¯̄Ax

€̄U þ G14b
�1l €̄W ¯̄A

T

y ; ð15cÞ

H1W̄þ H2Ū þ H3W̄ ¼ G15b
�1 €U þ G16b

�2Āx
€W; ð15dÞ

H4W̄þ H5Ū þ H6W̄ ¼ G15b
�1 €W þ G16b

�2l €WĀ
T

y ; ð15eÞ

in which the expressions of Li and Hi are listed in Appendix B, and Ū; V̄; W̄; Ū and W̄ are vectors
generated by stacking the rows of the corresponding rectangular matrices U, V, W, U and W into
one column vector.

In order to avoid the ill-conditioning matrix and easily decouple, the coupled nonlinear
equations (15) are changed to the equivalent forms by algebraic operation. The process given in
the present paper is different from the approach in Ref. [16].

From Eqs. (15a) and (15b), the unknown vectors Ū and V̄ in terms of W̄ can be expressed as

Ū ¼ L�1
9 L�1

23 H21ðW̄Þ � L�1
9 L�1

32 H12ðW̄Þ;

V̄ ¼ L�1
10 L�1

12 H21ðW̄Þ � L�1
10 L�1

21 H12ðW̄Þ;
ð16Þ

where

L21 ¼ L1 þ L2; L12 ¼ L1 � L2; L32 ¼ L2 þ L3; L23 ¼ L2 � L3;

L9 ¼ L�1
32 L21 � L�1

23 L12; L10 ¼ L�1
21 L32 � L�1

12 L23;

H12ðW̄Þ ¼ ðL21W̄Þ � ðL7W̄Þ þ ðL32W̄Þ � ðL8W̄Þ;

H21ðW̄Þ ¼ ðL12W̄Þ � ðL7W̄Þ þ ðL23W̄Þ � ðL8W̄Þ:

Substituting Eq. (16) into Eq. (15c), the coupling equations (15a)–(15c) can be decoupled. By
applying the harmonic balance method [19] and neglecting the higher harmonic component, Eqs.
(15c)–(15e) may be solved iteratively.

The grid spacing pattern in this paper is given as follows [11]:

X i ¼
1
2
½1� cos

ði � 1Þp
Nx � 1

�; i ¼ 1; 2; :::Nx;

Y i ¼
1
2
½1� cos

ði � 1Þp
Ny � 1

�; i ¼ 1; 2; :::Ny; ð17Þ

in which, Xi and Yi are the spacing grids in x and y directions, respectively. Wang and Bert [14]
pointed out that DQM can yield good results for static and free vibration analyses of rectangular
plates with various aspect ratios, a=b; when the same number of grids points along x and y axes is
employed, namely, Nx ¼ Ny ¼ N: Thus, in the following computation, we apply the same number
of grid points in x and y directions.
4. Results and conclusions

The presented procedure may be, at the same time, employed to solve both linear and nonlinear
problems and make comparison between them. In numerical computations, the nonlinear
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vibration behavior is described by the ratio of nonlinear vibration frequency to the corresponding
linear vibration frequency, namely, ðo=o0Þ:

4.1. Convergence and comparison studies

In other papers, the convergences of the DQM for linear free vibration and the static
geometrically nonlinear analysis of isotropic and orthotropic rectangular plates have been
discussed [12,13], respectively. It can be seen that the DQ solution has very good convergence. In
this section, the numerical convergence and comparison studies of the DQ solution for
geometrically nonlinear free vibration are carried out first by considering the ratio of nonlinear
vibration frequency to linear vibration frequency, namely, ðo=o0Þ:

For nonlinear free vibration of an isotropic square plate with finite deformations and
shear deformation effects, the frequency ratios ðo=o0Þ for various amplitude ratios are obtained
by using the present approach with different grids of sampling points. Results are shown in
Fig. 1 and Table 1, together with the other solutions for thin plates [21]. From Fig. 1 and Table 1,
it is seen that the numerical solutions obtained from DQWB converge rapidly with the
grid refinement. The DQ solutions obtained from the grid sizes of 7� 7 and 9� 9 own the
same accuracy. From Table 1, it can be seen that we only employ the grid size of 5� 5 to
obtain satisfactory results. Thus, in the following computation, we apply 5� 5 unequally spaced
grids.

Moreover, for thin plates, it is seen that all results are consistent, in spite of that, we employ the
Reddy’s theory of plates with the effect of higher-order shear deformations and finite
deformations or the Kirchhoff theory of thin plates with finite deformations. But for plates in
which the thickness-to-width ratio is no longer small, there is the difference between results
obtained from different theories of plates. This will be discussed later.

Based on the analysis above, the present method has good reliability and accuracy. Next, we
will give typical numerical examples to show the effects of geometric and material parameters,
transverse shear deformation and rotation inertia, as well as amplitude of nonlinear vibration on
the frequency ratio o=o0: To consider the effect of orthotropy, the material parameters in
computation are listed in Table 2.

4.2. Parameter study

Fig. 2 shows the effect of plate length-to-width ratio a=b on the amplitude–frequency ratio
curves of nonlinear vibration of orthotropic plates. In computation, we take the plate thickness-
to-length ratio h=a ¼ 0:1 and the material parameters are listed in Table 2.

It can be seen that the frequency ratio o=o0 increases as a=b changes from 1 to 0.1 or from 1 to
2 for same dimensionless amplitude. It is demonstrated that the difference between nonlinear
vibration frequency o and linear vibration frequency o0 of the rectangular plate is larger than that
of the square plate under a certain thickness-to-length ratio ðh=aÞ when dimensionless amplitude is
under a certain range. At the same time, it is observed that the difference between o and o0

increases with an increase in the dimensionless amplitude.
Fig. 3 shows the effect of thickness-to-length ratio ðh=aÞ of the plate on amplitude–

frequency curves of nonlinear vibration of an orthotropic square plate with orthotropy
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Fig. 1. DQ solution of central deflection of the square plate (a=h ¼ 100; n ¼ 0:3) for different grids.

Table 1

o=o0 comparison for isotropic square plate (a=h ¼ 240; n ¼ 0:3)

Wmax 0.2 0.4 0.6 0.8 1

Present DQ 5� 5 1.0186 1.0736 1.1548 1.2641 1.3929

Present DQ 7� 7 1.0194 1.0760 1.1641 1.2790 1.4142

Elliptic function [19] 1.0195 1.0757 1.1625 1.2734 1.4024

Peturbation [19] 1.0196 1.0761 1.1642 1.2774 1.4097

FEM [19] 1.0185 1.0716 1.1533 1.2565 1.3752

Table 2

Material parameters in computation in Figs. 2–5

Materials E1 E2 g12 g13 g23 u12 u21 E1=g13

Isotropy 14.7 0.25 2.5

Orthotropy A 145.5 76.4 42.6 25.91 43.23 0.44 0.23 5.6

Orthotropy B 128 8 4.5 4.5 1.6 0.28 0.28 28.4

Orthotropy C 144.79 9.65 4.14 4.14 3.312 0.3 0.3 34.5

Orthotropy D 174.6 6.98 3.49 3.49 1.4 0.25 0.25 50

J.-J. Li, C.-J. Cheng / Journal of Sound and Vibration 281 (2005) 295–309304
material B in Table 2. It is seen that an increase in the thickness-to-length ratio results in an
increase in the difference between the nonlinear vibration frequency and linear vibration
frequency.
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Further, the effect of transverse shear deformations on nonlinear vibration behaviors of the
orthotropic plate is investigated by comparison of the frequency o with frequency o1, in which o
is the nonlinear frequency, including the effects of transverse shear deformation and rotation
inertia, and o1 is the corresponding linear frequency obtained from the classical theory of plates,
excluding these effects.

The ratios o=o1 have been computed for various non-dimensional amplitudes. The results are
graphically presented in Figs. 4 and 5 for various thickness-to-length ratios and material
parameters, respectively. It can be seen that, with the increase of h=a or E1=G13; the effects of
transverse shear deformation and rotation inertia on the frequency ratio o=o1 are apparently
increased when the dimensionless amplitude is under a certain range, especially at small amplitudes.
5. Concluding remarks

The nonlinear free vibration problem of orthotropic plates with finite deformations and the
effect of higher-order transverse shear deformations is studied by using DQM. Good convergence
is presented even when only a small number of grid points are used. A wide variety of cases are
performed to examine the nonlinear free vibration characteristics of orthotropic plates. The
difference between the nonlinear vibration frequency and linear vibration frequency increases with
increases in the dimensionless amplitude and the thickness-to-length ratio, and the difference for a
rectangular plate is larger than that of a square plate when the dimensionless amplitude is under a
0.0 0.2 0.4 0.6 0.8 1.0
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ω
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0

Fig. 2. Effect curves of length-to-width ratio on amplitude–frequency.
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Fig. 3. Effect curves of thickness on amplitude–frequency.
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Fig. 4. Effect curves of shear deformation on amplitude–frequency.
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Fig. 5. Effect curves of material parameter on amplitude–frequency.
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certain range. The effects of transverse shear deformation and rotation inertia on the frequency
ratio are apparently increases when the thickness-to-length ratio or material orthotropy increases.
It can be seen that the present DQM is accurate and efficient for solving complex nonlinear
problems.
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Appendix A

Gi and Di in Eqs. (1) and (3) are given by
A11 ¼ m; A12 ¼ ev1m; A22 ¼ em; A66 ¼ g12;

G1 ¼ �m=252; G2 ¼ �em=252; G3 ¼ �ð2g12=E1 þ n1emÞ=126; G4 ¼ 4m=315; G5 ¼ 4em=315;

G6 ¼ 4ð2g12=E1 þ n1emÞ=315; G7 ¼ �8g13=15E1; G8 ¼ �8g23=15E1; G10 ¼ 17m=315; G15 ¼ 17=315;

G9 ¼ 17ðg12=E1 þ n1emÞ=315; G11 ¼ 17g12=315E1; G12 ¼ 17em=315; G13 ¼ �1=252; G14 ¼ �G16 ¼ 4=315;

D1 ¼ h4mE1=15a; D2 ¼ h4n1mE2=15b; D3 ¼ �h4mE1=60a2; D4 ¼ �h4n1mE2=60b2;

D5 ¼ n1eD1; D6 ¼ D2=n1; D7 ¼ n1eD3; D8 ¼ D4=n1;

D9 ¼ h6mE1=105a; D10 ¼ h6n1mE2=105b; D11 ¼ �h6mE1=336a2; D12 ¼ �h4n1mE2=336b2;

D13 ¼ n1eD9; D14 ¼ D10=n1; D15 ¼ n1eD11; D16 ¼ D12=n1:

where m ¼ 1=ð1� n1n2Þ; e ¼ E2=E1:



ARTICLE IN PRESS

J.-J. Li, C.-J. Cheng / Journal of Sound and Vibration 281 (2005) 295–309308
Appendix B

Li and Hi in Eqs. (19) and (3) are given by

L1 ¼ A11ðIy 
 B̄xÞ þ A66l
2
ðB̄y 
 IxÞ; L2 ¼ ðA12 þ A66ÞlðĀy 
 ĀxÞ; L7 ¼ b�1

ðIy 
 ĀxÞ;

L8 ¼ lb�1
ðĀy 
 IxÞ; L3 ¼ A22l

2
ðB̄y 
 IxÞ þ A66ðIy 
 B̄xÞ;

L5 ¼ l2b2A12ðB̄y 
 IxÞ þ b2A11ðIy 
 B̄xÞ; L6 ¼ l2b2A22ðB̄y 
 IxÞ þ b2A12ðIy 
 B̄xÞ;

L4 ¼ G1ðIy 
 D̄xÞ þ G2l
4
ðD̄y 
 IxÞ þ G3l

2
ðB̄y 
 B̄xÞ � G7b

2
ðIy 
 B̄xÞ � G8l

2b2
ðB̄y 
 IxÞ;

H7 ¼ G4bðIy 

¯̄CxÞ þ G6bl

2
ðB̄y 


¯̄AxÞ � G7b
3
ðIy 


¯̄AxÞ;

H8 ¼ G5bl
3
ð ¯̄Cy 
 IxÞ þ G6lbð ¯̄Ay 
 B̄xÞ � G8lb

3
ð ¯̄Ay 
 IxÞ;

H1 ¼ �G4ðIy 
 C̄xÞ � G6l
2
ðB̄y 
 ĀxÞ þ G7b

2
ðIy 
 ĀxÞ;

H2 ¼ G10bðIy 

¯̄BxÞ þ G11blðB̄y 
 IxÞ þ G7b

3
ðIy 
 IxÞ;

H3 ¼ G9blð ¯̄Ay 
 ĀxÞ; H5 ¼ G9blðĀy 

¯̄AxÞ;

H4 ¼ �G5l
3
ðC̄y 
 IxÞ � G6lðĀy 
 B̄xÞ þ G8lb

2
ðĀy 
 IxÞ;

H6 ¼ G12bl
2
ð ¯̄By 
 IxÞ þ G11bðIy 
 B̄xÞ þ G8b

3
ðIy 
 IxÞ;

where the symbol 
 denotes the Kronecker product of matrices, Ix and Iy are the unit matrices.
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